
Introduction to Lexical
Analysis

Scanning and Regular Expressions

Lexical Analysis

Definition:
• reads characters and produces sequences of tokens.

Target:
• Towards automated Lexical Analysis.

First Step

• First step in any translation: determine whether the text to be
translated is well constructed in terms of the input language.

• Syntax is specified with parts of speech - syntax checking matches
parts of speech against a grammar.

In natural languages, mapping words to part of speech is idiosyncratic.
In formal languages, mapping words to part of speech is syntactic:
• based on denotation
• makes this a matter of syntax
• reserved keywords are important

Lexical Analysis

Goals of Lexical Analysis
● Convert from physical description of a program

into sequence of of tokens .
●

●

E a c h token represents one logical piece of the source
file – a keyword, the name of a variable, etc .

E a c h token is associated with a lexeme .
● The actual text of the token: “137,” “ int ,” etc .

● E a c h token may have optional attributes .
●

●

Extra information derived from the text – perhaps a
numeric value.

The token sequence will be used in the parser to
recover the program structure.

Choosing Tokens

What Tokens are Useful H er e?

for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;

}

What Tokens are Useful H er e?

for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;

}
for
int
<<
=
(
)

{
}
;
<
[
]

++

What Tokens are Useful H er e?

for (int k = 0; k < myArray[5]; ++k) {
cout << k << endl;

}
for
int
<<
=
(
)

{
}
;
<
[
]

++

Identifier
IntegerConstant

Choosing Good Tokens
●

●

Very much dependent on the language.
Typically:
●

●

●

●

Give keywords their own tokens.
Give different punctuation symbols their own
tokens.
Group lexemes representing identifiers,
numeric constants, strings, etc . into their own
groups.
Discard irrelevant information (whitespace,
comments)

Thanks to Prof. AlexAiken

Scanning is Hard

● F O RT R A N : Whitespace is irrelevant

DO 5 I = 1,25
DO 5 I = 1.25

Thanks to Prof. AlexAiken

Scanning is Hard

● F O RT R A N : Whitespace is irrelevant

DO 5 I = 1,25

DO5I = 1.25

Thanks to Prof. AlexAiken

Scanning is Hard

● F O RT R A N : Whitespace is irrelevant

DO 5 I = 1,25

DO5I = 1.25

● C a n be difficult to tell when to partition
input .

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

vector<vector<int>> myVector

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

vector < vector < int >> myVector

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

(vector < (vector < (int >> myVector)))

Thanks to Prof. AlexAiken

Scanning is Hard

● C + + : Nested template declarations

(vector < (vector < (int >> myVector)))

● Again, can be difficult to determine
where to split .

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

Thanks to Prof. AlexAiken

Scanning is Hard

● PL/1: Keywords can be used as
identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

● C a n be difficult to determine how to label
lexemes.

Chal lenges in Scanning

●

●

●

How do we determine which lexemes are
associated with each token?
When there are multiple ways we could scan the
input, how do we know which one to pick?
How do we address these concerns
efficiently?

Some Definitions

• A vocabulary (alphabet) is a finite set of symbols.
• A string is any finite sequence of symbols from a vocabulary.
• A language is any set of strings over a fixed vocabulary.
• A grammar is a finite way of describing a language.

• A context-free grammar, G, is a 4-tuple, G=(S,N,T,P), where:
S: starting symbol
N: set of non-terminal symbols
T: set of terminal symbols
P: set of production rules

• A language is the set of all terminal productions of G.

Cat Language

• Example:
S=CatWord;
N={CatWord};
T={miau};
P={CatWord → CatWord miau | miau}

Example:

S=E;
N={E,T,F};
T={+,*,(,),x}
P={E→T|E+T,

T →F|T*F,
F →(E)|x}

Use left most derivation
To derive the expression: X + X * X.

Validation

• To recognise a valid sentence we reverse this process.

Exercise:

• what language is generated by the (non-context free)
grammar:
S=S;
N={A,B,S};
T={a,b,c};

P={S→abc|aAbc,
Ab→bA,
Ac→Bbcc,

bB→Bb,
aB →aa|aaA}

(for the curious: read about Chomsky’s Hierarchy)

Why study lexical analysis?

• To avoid writing lexical analysers (scanners) by hand.

• To simplify specification and implementation.

• To understand the underlying techniques and technologies.

Why study lexical analysis?

• We want to specify lexical patterns (to derive tokens):
• Some parts are easy:

• WhiteSpace → blank | tab | WhiteSpace blank | WhiteSpace tab
• Keywords and operators (if, then, =, +)
• Comments (/* followed by */ in C, // in C++, % in latex, ...)

• Some parts are more complex:
• Identifiers (letter followed by - up to n - alphanumerics…)
• Numbers

• We need a notation that could lead to an implementation!

Regular Expressions

• Patterns form a regular language. A regular expression is a way of
specifying a regular language. It is a formula that describes a possibly
infinite set of strings.

Regular Expression (RE) (over a vocabulary V):
• ε is a RE denoting the empty set {ε}.
• If a ∈V then a is a RE denoting {a}.
• If r1, r2 are REs then:

• r1* denotes zero or more occurrences of r1;
• r1r2 denotes concatenation;
• r1 | r2 denotes either r1 or r2;

Regular Expressions

• Shorthands:
• [a-d] for a | b | c | d;
• r+ for rr*;
• r? for r | ε

Operator Precedence

●

●

Regular expression operator precedence
is

(R)
R*

R 1R 2

R1 | R2

S o ab*c|d is parsed as ((a(b*))c)|d

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings containing
00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000

11111011110011111

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings of length
exactly four:

(0|1){4}

0000
1010
1111
1000

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

1*(0 | ε)1*

11110111
111111
0111

0

Simple Regular Expressions

●

●

Suppose the only characters are 0 and 1.

He re is a regular expression for strings that
contain at most one zero:

1*0?1*

11110111
111111
0111

0

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

a+ (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+.a+ (.a+)*

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

a+ (.a+)* @ a+ (.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose our alphabet is a, @ , and ., where a
represents “some letter.”

A regular expression for email addresses is

a+(.a+)*@a+(.a+)+

cs143@cs.stanford.edu
first.middle.last@mail.site.org

barack.obama@whitehouse.gov

mailto:cs143@cs.stanford.edu
mailto:first.middle.last@mail.site.org
mailto:barack.obama@whitehouse.gov

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.
A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.
A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.
A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.
A regular expression for even numbers is

(+|-)?[0123456789]*[02468]

42
+1370
-3248

-9999912

Applied Regular Expressions

●

●

Suppose that our alphabet is all AS C I I
characters.
A regular expression for even numbers is

(+|-)?[0-9]*[02468]

42
+1370
-3248

-9999912

Regular Expressions

Describe the languages denoted by the following REs:
• a;
• a | b;
• a*;
• (a | b)*;
• (a | b)(a | b);
• (a*b*)*;
• (a | b)*baa;

3-Nov-21 COMP36512 Lecture 3 66

Examples
• integer → (+ | – | ε) (0 | 1 | 2 | … | 9)+
• integer → (+ | – | ε) (0 | (1 | 2 | … | 9) (0 | 1 | 2 | … | 9)*)
• decimal → integer.(0 | 1 | 2 | … | 9)*
• identifier → [a-zA-Z] [a-zA-Z0-9]*

• Real-life application (perl regular expressions):
– [+–]?(\d+\.\d+|\d+\.|\.\d+)

– [+–]?(\d+\.\d+|\d+\.|\.\d+|\d+)([eE][+–]?\d+)?

(for more information read: % man perlre)

(Not all languages can be described by regular expressions.
But, we don’t care for now).

3-Nov-21 COMP36512 Lecture 3 67

Building a Lexical Analyser by hand
Based on the specifications of tokens through regular expressions we

can write a lexical analyser. One approach is to check case by case
and split into smaller problems that can be solved ad hoc. Example:

void get_next_token() {
c=input_char();
if (is_eof(c)) { token ← (EOF,”eof”); return}
if (is_letter(c)) {recognise_id()}
else if (is_digit(c)) {recognise_number()}

else if (is_operator(c))||is_separator(c))
{token ← (c,c)} //single char assumed
else {token ← (ERROR,c)}

return;
}
...
do {

get_next_token();
print(token.class, token.attribute);

} while (token.class != EOF);

Can be efficient; but requires a lot of work and may be difficult to modify!

3-Nov-21 COMP36512 Lecture 3 68

Building Lexical Analysers “automatically”
Idea: try the regular expressions one by one and find the longest match:
set (token.class, token.length) ←(NULL, 0)
// first
find max_length such that input matches T1→RE1

if max_length > token.length
set (token.class, token.length) ←(T1, max_length)

// second
find max_length such that input matches T2→RE2

if max_length > token.length
set (token.class, token.length) ←(T2, max_length)…

// n-th
find max_length such that input matches Tn→REn

if max_length > token.length
set (token.class, token.length) ←(Tn, max_length)

// error
if (token.class == NULL) { handle no_match }

Disadvantage: linearly dependent on number of token classes and
requires restarting the search for each regular expression.

3-Nov-21 COMP36512 Lecture 3 69

We study REs to automate scanner construction!
Consider the problem of recognising register names starting with r and

requiring at least one digit:
Register → r (0|1|2|…|9) (0|1|2|…|9)* (or, Register → r Digit Digit*)
The RE corresponds to a transition diagram:

Depicts the actions that take place in the scanner.
• A circle represents a state; S0: start state; S2: final state (double circle)
• An arrow represents a transition; the label specifies the cause of the transition.
A string is accepted if, going through the transitions, ends in a final state

(for example, r345, r0, r29, as opposed to a, r, rab)

S0 S1

r digit
S2

digit
start

3-Nov-21 COMP36512 Lecture 3 70

Towards Automation (finally!)
An easy (computerised) implementation of a transition diagram

is a transition table: a column for each input symbol and a
row for each state. An entry is a set of states that can be
reached from a state on some input symbol. E.g.:

state ‘r’ digit
0 1 -
1 - 2
2(final) - 2

If we know the transition table and the final state(s) we can
build directly a recogniser that detects acceptance:

char=input_char();
state=0; // starting state
while (char != EOF) {

state ← table(state,char);
if (state == ‘-’) return failure;
word=word+char;
char=input_char();

}
if (state == FINAL) return acceptance; else return failure;

DFA & NFA

The generalised transition diagram is a finite
automaton. It can be:

• Deterministic, DFA; as in the example
• Non-Deterministic, NFA; more than 1 transition out of a

state may be possible on the same input symbol: think
about: (a | b)* abb

Every regular expression can be converted to a
DFA! 71

	Introduction to Lexical Analysis
	Lexical Analysis
	First Step
	Lexical Analysis
	Goals of Lexical Analysis
	Choosing Tokens
	What Tokens are Useful Here?
	What Tokens are Useful Here?
	What Tokens are Useful Here?
	Choosing Good Tokens
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Scanning is Hard
	Challenges in Scanning
	Some Definitions
	Cat Language
	Example:
	Validation
	Exercise:
	Why study lexical analysis?
	Why study lexical analysis?
	Regular Expressions
	Regular Expressions
	Operator Precedence
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Simple Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Applied Regular Expressions
	Regular Expressions
	Examples
	Building a Lexical Analyser by hand
	Building Lexical Analysers “automatically”
	We study REs to automate scanner construction!
	Towards Automation (finally!)
	DFA & NFA

