Introduction to Lexical Analysis

Scanning and Regular Expressions

Lexical Analysis

Definition:

• reads characters and produces sequences of tokens.

Target:

• Towards automated Lexical Analysis.

First Step

- First step in any <u>translation</u>: determine whether the text to be translated is well constructed in terms of the input language.
- Syntax is specified with parts of speech syntax checking matches parts of speech against a grammar.

In <u>natural languages</u>, mapping words to part of speech is idiosyncratic.

In <u>formal languages</u>, mapping words to part of speech is syntactic:

- based on denotation
- makes this a matter of syntax
- reserved keywords are important

Lexical Analysis

What does lexical analysis do? Recognises the language's parts of speech.

Goals of Lexical Analysis

- Convert from physical description of a program into sequence of of tokens.
 - Each token represents one logical piece of the source file a keyword, the name of a variable, etc.
- Each token is associated with a lexeme.
 - The actual text of the token: "137," "int," etc.
- Each token may have optional attributes.
 - Extra information derived from the text perhaps a numeric value.
- The token sequence will be used in the parser to recover the program structure.

Choosing Tokens

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) {
 cout << k << endl;
}</pre>

What Tokens are Useful Here?

What Tokens are Useful Here?

Identifier IntegerConstant

Choosing Good Tokens

- Very much dependent on the language.
- Typically:
 - Give keywords their own tokens.
 - Give different punctuation symbols their own tokens.
 - Group lexemes representing identifiers, numeric constants, strings, etc. into their own groups.
 - Discard irrelevant information (whitespace, comments)

• FORTRAN: Whitespace is irrelevant

DO 5 I =
$$1,25$$

DO 5 I = 1.25

• FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25DO5I = 1.25

• FORTRAN: Whitespace is irrelevant

DO 5 I = 1,25DO5I = 1.25

• Can be difficult to tell when to partition input.

• C + +: Nested template declarations

vector<vector<int>> myVector

• C + +: Nested template declarations

vector < vector < int >> myVector

• C + +: Nested template declarations

(vector < (vector < (int >> myVector)))

• C + +: Nested template declarations

```
(vector < (vector < (int >> myVector)))
```

• Again, can be difficult to determine where to split.

• PL/1: Keywords can be used as identifiers.

• PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

• PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE = IF

• PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE = IF

• Can be difficult to determine how to label lexemes.

Challenges in Scanning

- . How do we determine which lexemes are associated with each token?
- . When there are multiple ways we could scan the input, how do we know which one to pick?
 - How do we address these concerns
- efficiently?

Some Definitions

- A vocabulary (alphabet) is a finite set of symbols.
- A <u>string</u> is any finite sequence of symbols from a vocabulary.
- A <u>language</u> is any set of strings over a fixed vocabulary.
- A grammar is a finite way of describing a language.
- A context-free grammar, G, is a 4-tuple, G=(S,N,T,P), where:
 - S: starting symbol N: set of non-terminal symbols T: set of terminal symbols
 - P: set of production rules
- A language is the set of all terminal productions of G.

Cat Language

• Example:

S=CatWord; $N=\{CatWord\};$ $T=\{miau\};$ $P=\{CatWord \rightarrow CatWord miau | miau\}$

Example:

S=E; $N=\{E,T,F\};$ $T=\{+,*,(,),x\}$ $P=\{E \rightarrow T \mid E+T,$ $T \rightarrow F \mid T*F,$ $F \rightarrow (E) \mid x\}$

→ Use left most derivation

To derive the expression: X + X * X.

Validation

• To recognise a valid sentence we reverse this process.

Exercise:

 what language is generated by the (non-context free) grammar: *S=S; N={A,B,S}; T={a,b,c};* $P={S \rightarrow abc | aAbc},$ $Ab \rightarrow bA$, $Ac \rightarrow Bbcc$, $bB \rightarrow Bb$, $aB \rightarrow aa | aaA \}$ (for the curious: read about Chomsky's Hierarchy)

Why study lexical analysis?

- To avoid writing lexical analysers (scanners) by hand.
- To simplify specification and implementation.
- To understand the underlying techniques and technologies.

Why study lexical analysis?

- We want to specify **lexical patterns** (to derive tokens):
 - Some parts are easy:
 - WhiteSpace → blank | tab | WhiteSpace blank | WhiteSpace tab
 - Keywords and operators (if, then, =, +)
 - Comments (/* followed by */ in C, // in C++, % in latex, ...)
 - Some parts are more complex:
 - Identifiers (letter followed by up to *n* alphanumerics...)
 - Numbers
- We need a notation that could lead to an implementation!

Regular Expressions

• Patterns form a regular language. A regular expression is a way of specifying a regular language. It is a formula that describes a possibly infinite set of strings.

Regular Expression (RE) (over a vocabulary V):

- ε is a RE denoting the empty set $\{\varepsilon\}$.
- If $a \in V$ then a is a RE denoting $\{a\}$.
- If r_1 , r_2 are REs then:
 - r_1^* denotes zero or more occurrences of r_1 ;
 - $r_1 r_2$ denotes concatenation;
 - r₁ / r₂ denotes either r₁ or r₂;

Regular Expressions

• Shorthands:

- [*a*-*d*] for *a* / *b* / *c* / *d*;
- *r*⁺ for *rr**;
- r? for $r \mid \varepsilon$

Operator Precedence

 Regular expression operator precedence is

> (R) R*

 R_1R_2

$\mathbf{R}_1 ~|~ \mathbf{R}_2$

• So ab*c d is parsed as ((a(b*))c) d

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101 0000 11111011110011111

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101 0000 11111011110011111

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1){4}

- Suppose the only characters are **0** and **1**.
- Here is a regular expression for strings of length exactly four:

(0|1){4}

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

1*(0 | ε)1*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

1*(0 | ε)1*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

1*0?1*

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

```
aa* (.aa*)* @ aa*.aa* (.aa*)*
```

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

```
aa* (.aa*)* @ aa*.aa* (.aa*)*
```

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

```
aa* (.aa*)* @ aa*.aa* (.aa*)*
```

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa* (.aa*)*

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

a⁺ (.aa^{*})^{*} @ aa^{*}.aa^{*} (.aa^{*})^{*}

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

a⁺ (.a⁺)^{*} @ a⁺.a⁺ (.a⁺)^{*}

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

a⁺ (.a⁺)^{*} @ a⁺.a⁺ (.a⁺)^{*}

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

a+(.a+)*@a+(.a+)+

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?[0123456789]*[02468]

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?[0-9]*[02468]

Regular Expressions

Describe the languages denoted by the following REs:

- a;
- a | b;
- a*;
- (a | b)*;
- (a | b)(a | b);
- (a*b*)*;
- (a | b)*baa;

Examples

- integer \rightarrow (+ / / ϵ) (0 / 1 / 2 / ... / 9)+
- integer $\rightarrow (+/-|\varepsilon) (0/(1/2/.../9) (0/1/2/.../9)^*)$
- decimal \rightarrow integer. $(0 | 1 | 2 | ... | 9)^*$
- identifier \rightarrow [a-zA-Z] [a-zA-Z0-9]*
- Real-life application (perl regular expressions):

- [+-]?($d+\.\d+ | d+\. | d+$)

- [+-]?($d+\.\d+ | d+\. | d+ | d+ | d+ | d+ | d+] = [+-]? d+]?$

(for more information read: % man perlre)

(Not all languages can be described by regular expressions. But, we don't care for now).

COMP36512 Lecture 3

Building a Lexical Analyser by hand

Based on the specifications of tokens through regular expressions we can write a lexical analyser. One approach is to check case by case and split into smaller problems that can be solved *ad hoc*. Example:

```
void get_next_token() {
  c=input char();
  if (is_eof(c)) { token < (EOF, "eof"); return}</pre>
  if (is_letter(c)) {recognise_id()}
  else if (is_digit(c)) {recognise_number()}
       else if (is_operator(c)) | | is_separator(c))
             {token \leftarrow (c,c)} //single char assumed
             else {token \leftarrow (ERROR, c)}
  return;
do {
  get_next_token();
  print(token.class, token.attribute);
} while (token.class != EOF);
```

Can be efficient; but requires a lot of work and may be difficult to modify!

Building Lexical Analysers "automatically"

Idea: try the regular expressions one by one and find the longest match:

```
set (token.class, token.length) \leftarrow (NULL, 0)
// first
find max length such that input matches T_1 \rightarrow RE_1
  if max length > token.length
       set (token.class, token.length) \leftarrow (T<sub>1</sub>, max_length)
// second
find max_length such that input matches T_2 \rightarrow RE_2
  if max_length > token.length
       set (token.class, token.length) \leftarrow (T<sub>2</sub>, max_length)
// n-th
find max_length such that input matches T_n \rightarrow RE_n
  if max length > token.length
       set (token.class, token.length) \leftarrow (T<sub>n</sub>, max_length)
// error
if (token.class == NULL) { handle no_match }
```

Disadvantage: linearly dependent on number of token classes and requires restarting the search for each regular expression.

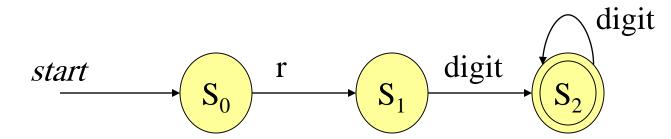
COMP36512 Lecture 3

We study REs to **automate** scanner construction!

Consider the problem of recognising register names starting with r and requiring at least one digit:

Register $\rightarrow r (0/1/2/.../9) (0/1/2/.../9)^*$ (or, Register $\rightarrow r Digit Digit^*$)

The RE corresponds to a **transition diagram**:



Depicts the actions that take place in the scanner.

- A circle represents a state; S0: start state; S2: final state (double circle)
- An arrow represents a transition; the label specifies the cause of the transition.
 A string is accepted if, going through the transitions, ends in a final state (for example, r345, r0, r29, as opposed to a, r, rab)

Towards Automation (finally!)

An easy (computerised) implementation of a transition diagram is a <u>transition table</u>: a column for each input symbol and a row for each state. An entry is a set of states that can be reached from a state on some input symbol. E.g.:

state	`r'	digit
0 1	1 -	- 2

If we know the transition table and the final state(s) we can

build directly a recogniser that detects acceptance:

```
char=input_char();
state=0; // starting state
while (char != EOF) {
    state 	{ table(state,char);
    if (state == `-') return failure;
    word=word+char;
    char=input_char();
}
if (state == FINAL) return acceptance; else return failure;
```

DFA & NFA

The generalised transition diagram is a <u>finite</u> <u>automaton</u>. It can be:

- **Deterministic**, DFA; as in the example
- Non-Deterministic, NFA; more than 1 transition out of a state may be possible on the same input symbol: think about: (a / b)* abb

Every regular expression can be converted to a DFA!