Introduction to Lexical Analysis

Scanning and Regular Expressions

Lexical Analysis

Definition:

- reads characters and produces sequences of tokens.

Target:

- Towards automated Lexical Analysis.

First Step

- First step in any translation: determine whether the text to be translated is well constructed in terms of the input language.
- Syntax is specified with parts of speech - syntax checking matches parts of speech against a grammar.
In natural languages, mapping words to part of speech is idiosyncratic.
In formal languages, mapping words to part of speech is syntactic:
- based on denotation
- makes this a matter of syntax
- reserved keywords are important

Lexical Analysis

What does lexical analysis do?
Recognises the language's parts of speech.

Goals of Lexical Analysis

- Convert from physical description of a program into sequence of of tokens.
- Each token represents one logical piece of the source file - a keyword, the name of a variable, etc.
- Each token is associated with a lexeme.
- The actual text of the token: "137," "int," etc.
- Each token may have optional attributes.
- Extra information derived from the text - perhaps a numeric value.
- The token sequence will be used in the parser to recover the program structure.

Choosing Tokens

What Tokens are Useful Here?

```
for (int k = 0; k < myArray[5]; ++k) {
    cout << k << endl;
}
```


What Tokens are Useful Here?

for (int $k=0 ; k<m y A r r a y[5] ; ~++k) ~\{$ cout << k << endl;
\}

What Tokens are Useful Here?

for (int k = 0; k < myArray[5]; ++k) \{ cout << k << endl;
\}

Identifier
IntegerConstant

Choosing Good Tokens

- Very much dependent on the language.
- Typically:
- Give keywords their own tokens.
- Give different punctuation symbols their own tokens.
- Group lexemes representing identifiers, numeric constants, strings, etc. into their own groups.
- Discard irrelevant information (whitespace, comments)

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

> DO $5 \mathrm{I}=1,25$
> DO $5 \mathrm{I}=1.25$

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

> DO 5 I $=1,25$
> DO5I $=1.25$

Scanning is Hard

- FORTRAN: Whitespace is irrelevant

$$
\begin{aligned}
\text { D0 } 5 \mathrm{I} & =1,25 \\
\text { D05I } & =1.25
\end{aligned}
$$

- Can be difficult to tell when to partition input.

Scanning is Hard

- C + + : Nested template declarations
vector<vector<int>> myVector

Scanning is Hard

- C + + : Nested template declarations
vector < vector < int >> myVector

Scanning is Hard

- C + + : Nested template declarations
(vector < (vector < (int >> myVector)))

Scanning is Hard

- C + + : Nested template declarations

$$
(\text { vector < (vector < (int >> myVector))) }
$$

- Again, can be difficult to determine where to split.

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

Scanning is Hard

- PL/1: Keywords can be used as identifiers.

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```


Scanning is Hard

- PL/1: Keywords can be used as identifiers.

```
IF THEN THEN THEN = ELSE; ELSE ELSE = IF
```


Scanning is Hard

- PL/1: Keywords can be used as identifiers.

IF THEN THEN THEN = ELSE; ELSE ELSE = IF

- Can be difficult to determine how to label lexemes.

Challenges in Scanning

- How do we determine which lexemes are associated with each token?
- When there are multiple ways we could scan the input, how do we know which one to pick?
How do we address these concerns
- efficiently?

Some Definitions

- A vocabulary (alphabet) is a finite set of symbols.
- A string is any finite sequence of symbols from a vocabulary.
- A language is any set of strings over a fixed vocabulary.
- A grammar is a finite way of describing a language.
- A context-free grammar, G, is a 4-tuple, $G=(S, N, T, P)$, where:
S : starting symbol
N : set of non-terminal symbols
T : set of terminal symbols
P : set of production rules
- A language is the set of all terminal productions of G.

Cat Language

- Example:

S=CatWord;
$N=\{$ CatWord $\}$;
$T=\{$ miau $\}$;
$P=\{$ CatWord \rightarrow CatWord miau | miau\}

Example:

$$
\begin{aligned}
& S=E ; \\
& N=\{E, T, F\} ; \\
& T=\left\{+,{ }^{*},(,,, x\}\right. \\
& P=\{E \rightarrow T \mid E+T, \\
& T \rightarrow F \mid T^{*} F, \\
& \\
& \quad F \rightarrow(E) \mid x\} \\
& \rightarrow \text { Use left most derivation }
\end{aligned}
$$

To derive the expression: $\mathrm{X}+\mathrm{X} * \mathrm{X}$.

Validation

- To recognise a valid sentence we reverse this process.

Exercise:

- what language is generated by the (non-context free) grammar:
$S=S$;
$N=\{A, B, S\} ;$
$T=\{a, b, c\} ;$
$P=\{S \rightarrow a b c / a A b c$,
$A b \rightarrow b A$,
$A c \rightarrow B b c c$,
$b B \rightarrow B b$,
$a B \rightarrow a a \mid a a A\}$
(for the curious: read about Chomsky's Hierarchy)

Why study lexical analysis?

- To avoid writing lexical analysers (scanners) by hand.
- To simplify specification and implementation.
- To understand the underlying techniques and technologies.

Why study lexical analysis?

- We want to specify lexical patterns (to derive tokens):
- Some parts are easy:
- WhiteSpace \rightarrow blank | tab | WhiteSpace blank | WhiteSpace tab
- Keywords and operators (if, then, =, +)
- Comments (/* followed by */ in C, // in C++, \% in latex, ...)
- Some parts are more complex:
- Identifiers (letter followed by - up to n - alphanumerics...)
- Numbers
- We need a notation that could lead to an implementation!

Regular Expressions

- Patterns form a regular language. A regular expression is a way of specifying a regular language. It is a formula that describes a possibly infinite set of strings.
Regular Expression (RE) (over a vocabulary V):
- ε is a RE denoting the empty set $\{\varepsilon\}$.
- If $a \in \mathrm{~V}$ then a is a RE denoting $\{a\}$.
- If r_{1}, r_{2} are REs then:
- $r_{1}{ }^{*}$ denotes zero or more occurrences of r_{1};
- $r_{1} r_{2}$ denotes concatenation;
- r_{1} / r_{2} denotes either r_{1} or r_{2};

Regular Expressions

- Shorthands:
- [a-d] for $a / b / c / d$;
- r^{+}for $r r^{*}$;
- r ? for r / ε

Operator Precedence

- Regular expression operator precedence is

$$
\begin{gathered}
(\mathrm{R}) \\
\mathrm{R}^{*} \\
\mathrm{R}_{1} \mathrm{R}_{2} \\
\mathrm{R}_{1} \mid \mathrm{R}_{2}
\end{gathered}
$$

- So $\mathbf{a b}{ }^{*} \mathbf{c} \mid \mathbf{d}$ is parsed as $\left(\left(\mathbf{a}\left(\mathbf{b}^{*}\right)\right) \mathbf{c}\right) \mid \mathbf{d}$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000
11111011110011111

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101 0000
11111011110011111

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)\{4\}

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)\{4\}

0000
1010
1111
1000

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

1*(0 $\mid \varepsilon) 1^{*}$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

11110111
 111111
 0111

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*}
$$

11110111
 111111
 0111

Simple Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

1*0?1*

11110111
 111111
 0111

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu

 first.middle.last@mail.site.org barack.obama@whitehouse.gov
Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu

 first.middle.last@mail.site.org barack.obama@whitehouse.gov
Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu

 first.middle.last@mail.site.org barack.obama@whitehouse.gov
Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is
aa* (.aa*)* @ aa*.aa* (.aa*)*

cs143@cs.stanford.edu

first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \text {(.aa*)* @ aa*.aa* (.aa*)* }
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+} . \mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+} \quad\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+} . \mathbf{a}^{+} \quad\left(. \mathbf{a}^{+}\right)^{*}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is

$$
a^{+} \quad\left(. a^{+}\right)^{*} @ \quad a^{+} \quad\left(. a^{+}\right)^{+}
$$

cs143@cs.stanford.edu first.middle.last@mail.site.org barack.obama@whitehouse.gov

Applied Regular Expressions

- Suppose our alphabet is a, @, and., where a represents "some letter."
- A regular expression for email addresses is

$$
\mathrm{a}^{+}\left(. \mathrm{a}^{+}\right)^{*} @ \mathrm{a}^{+}\left(. \mathrm{a}^{+}\right)^{+}
$$

cs143@cs.stanford.edu

 first.middle.last@mail.site.org barack.obama@whitehouse.gov
Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
$(+\mid-) ?(0|1| 2|3| 4|5| 6|7| 8 \mid 9) *(0|2| 4|6| 8)$

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
$(+\mid-) ?(0|1| 2|3| 4|5| 6|7| 8 \mid 9) *(0|2| 4|6| 8)$

$$
\begin{gathered}
42 \\
+1370 \\
-3248 \\
-9999912
\end{gathered}
$$

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
$(+\mid-) ?(0|1| 2|3| 4|5| 6|7| 8 \mid 9) *(0|2| 4|6| 8)$

$$
\begin{gathered}
42 \\
+1370 \\
-3248 \\
-9999912
\end{gathered}
$$

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
(+|-)?[0123456789]*[02468]

$$
\begin{gathered}
42 \\
+1370 \\
-3248 \\
-9999912
\end{gathered}
$$

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

$$
(+\mid-) ?[0-9] *[02468]
$$

$$
\begin{gathered}
42 \\
+1370 \\
-3248 \\
-9999912
\end{gathered}
$$

Regular Expressions

Describe the languages denoted by the following REs:

- a;
- a | b;
- a^{*};
- (a | b)*;
- (a | b) (a | b);
- (a*b*)*;
- (a | b)*baa;

Examples

- integer $\rightarrow(+/-/ \varepsilon)(0 / 1 / 2 / \ldots / 9)+$
- integer $\rightarrow(+/-/ \varepsilon)\left(0 /(1 / 2 / \ldots / 9)(0 / 1 / 2 / \ldots / 9)^{*}\right)$
- decimal \rightarrow integer.(0 / 1 / 2 / ... /9)*
- identifier \rightarrow [a-zA-Z] [a-zA-Z0-9]*
- Real-life application (perl regular expressions):
- [+-]?(\d+\. $\backslash d+|\backslash d+\backslash.| \backslash . \backslash d+)$
- [+-]? (\d+\. $\backslash d+|\backslash d+\backslash .|\backslash . \backslash d+| \backslash d+)([e E][+-] ? \backslash d+) ?$
(for more information read: \% man perlre)
(Not all languages can be described by regular expressions. But, we don't care for now).

Building a Lexical Analyser by hand

Based on the specifications of tokens through regular expressions we can write a lexical analyser. One approach is to check case by case and split into smaller problems that can be solved ad hoc. Example:

```
void get_next_token() {
    c=input_char();
    if (is_eof(c)) { token \leftarrow (EOF,"eof"); return}
    if (is_letter(c)) {recognise_id()}
    else if (is_digit(c)) {recognise_number()}
            else if (is_operator(c))||is_separator(c))
                                    {token \leftarrow (c,c)} //single char assumed
                                    else {token \leftarrow (ERROR,c)}
    return;
}
do {
    get_next_token();
    print(token.class, token.attribute);
} while (token.class != EOF);
```

Can be efficient; but requires a lot of work and may be difficult to modify!

Building Lexical Analysers "automatically"

Idea: try the regular expressions one by one and find the longest match:

```
set (token.class, token.length) \leftarrow(NULL, 0)
// first
find max_length such that input matches }\mp@subsup{T}{1}{}->\mp@subsup{R}{R}{\prime
    if max_length > token.length
        set (token.class, token.length) \leftarrow(T1, max_length)
// second
find max_length such that input matches }\mp@subsup{T}{2}{}->\mp@subsup{R}{R}{2
    if max_length > token.length
        set (token.class, token.length) \leftarrow( }\mp@subsup{T}{2,}{\prime}\mathrm{ max_length)
// n-th
find max_length such that input matches }\mp@subsup{T}{n}{}->\mp@subsup{R}{R}{
    if max_length > token.length
                set (token.class, token.length) \leftarrow(T, max_length)
// error
if (token.class == NULL) { handle no_match }
```

Disadvantage: linearly dependent on number of token classes and requires restarting the search for each regular expression.

We study REs to automate scanner construction!

Consider the problem of recognising register names starting with r and requiring at least one digit:

$$
\text { Register } \rightarrow r(0 / 1 / 2 / \ldots / 9)(0 / 1 / 2 / \ldots / 9)^{*}\left(\text { or, Register } \rightarrow r \text { Digit Digit }{ }^{*}\right)
$$

The RE corresponds to a transition diagram:

Depicts the actions that take place in the scanner.

- A circle represents a state; S0: start state; S2: final state (double circle)
- An arrow represents a transition; the label specifies the cause of the transition.

A string is accepted if, going through the transitions, ends in a final state (for example, r345, r0, r29, as opposed to a, r, rab)

Towards Automation (finally!)

An easy (computerised) implementation of a transition diagram is a transition table: a column for each input symbol and a row for each state. An entry is a set of states that can be reached from a state on some input symbol. E.g.:

state	${ }^{\prime} r^{\prime}$	digit
0	$\mathbf{1}$	-
$\mathbf{1}$	-	$\mathbf{2}$
$\mathbf{2}$ (final)	-	2

If we know the transition table and the final state(s) we can build directly a recogniser that detects acceptance:
char=input_char();
state=0; // starting state
while (char != EOF) \{
state \leftarrow table(state, char);
if (state == ‘' ${ }^{\prime}$) return failure;
word=word+char;
char=input_char();
if
if (state == FINAL) return acceptance; else return failure;

DFA \& NFA

The generalised transition diagram is a finite automaton. It can be:

- Deterministic, DFA; as in the example
- Non-Deterministic, NFA; more than 1 transition out of a state may be possible on the same input symbol: think about: $(a / b)^{*} a b b$
Every regular expression can be converted to a DFA!

